Application Programming J. Galambos, S. Bunch, C., M. Chu, S. Cousineau, S. Danilov, K. Danilova, T. Pelaia, A. Shishlo (SNS, ORNL), C. K. Allen, C. McChesney (LANL), W. D. Klotz (ESRF) I. Kriznar, A. Zupanc (Cosylab) May 11-13, 2004 May 11-13, 2004 ## **Application Programming Update Since November 2003** - XAL Infrastructure - Database population - Client server development - Online model - Benchmarking - Example uses - Analysis - Applications - ~ 20 XAL applications #### **Database Population** #### % Beamline Elements - Mostly populated for MEBT -> Ring - RTBT, Injection Dump and Extraction Dump are lacking - Over 1500 beamline elements are populated - Using database (e.g. global coordinates, PS / magnet mappings) ### "Standardizing" Application Program Efforts •An Application Framework is developed and used as a common starting point for application programs (*T. Pelaia*) - Common area for data export subdivided by application - Accessible from the elog - •Use of "time-stamp" file names for data export SPALLATION NEUTRON # The online model (C.K. Allen, C. McChesney, W. D. Klotz, P. Chu) - Algorithm refinement - Adaptive step size (with space charge) - Ring and transport-line modeling - Energy and phase tracking in accelerating elements (e.g. DTL tanks) - Data source - Design - Machine - Mixed design / machine - User "what if" capability - Data analysis scripts #### **External Lattice Check Procedure** May 11-13, 2004 #### **HEBT Lattice Check** Online model HEBT results Comparison of online model and MAD results ### Ring Lattice Check (P. Chu, S. Cousineau) s (m) Good agreement in MAD results, comparing the original starting point and a file generated with XAL (using default values from the databcase), and the online model. 1.00E1 6.00E0 2.00E0 -2.00E0 # Transverse Beam Property Analysis (preliminary results) - •Compare measured and model predicted beam sizes in the MEBT for a variety of MEBT magnet settings - •Solve for MEBT entrance twiss parameters to best match measured wire profiles under a variety of quad settings - Uses solver + online model packages within a script. # Longitudinal phase scan signature matching analysis (preliminary) Scan the DTL tank phase and observed downstream BPM phase signature **DTL** phase - •Match the observed BPM phase difference signature with the online model by varying the input energy, cavity phase and amplitude. - Done offline with a script **DTL** phase May 11-13, 2004 ### Orbit Display (Cosylab) - Uses the XAL application framework - Provides statistics - Can save the setup #### 1-D Scan Application (A. Shishlo) - Provides an easy way to scan one quantity and monitor others - Can average over pulses, scan multiple times, pause - Analysis includes fitting, intersection finding, min/max, etc. - Easy way to do a quick unanticipated experiment - Predefined scans with specialized analysis are possible - DTL and MEBT phase + amplitude setting applications #### Scope Application, Triggered Acquisition (T. Pelaia) - The Digital Oscilloscope with a similar user interface as analog scopes - MEBT rebuncher (RF) forward power trace with beam loading: - RF = 1 msec @ 20 Hz, beam = 50 μ sec @ 1 Hz - Use the correlator to filter only RF signals with beam pulses - Potential for future applications - Requires vigilance on good signal time stamps and proper time waveform packaging #### Wirescanner Application (S. Bunch) - Provides an easy way to quickly run many wire scans at once - Standard accelerator browser - Exports wire data to a file - View individual profile results - Translate data to Matlab format - Was suggested in last commissioning "lessons learned" (Nov. '03) - Student intern started it in Jan. '04 - Ready for commissioning (April) #### Loss Viewer Application (S.Cousineau) - View a summary of beam loss by machine section - "Zoomable" to specific BLMs - Viewable as fraction of permissible loss - Waterfall display of a specific beamline portion - Faraday cup inserted here #### Service Applications (T. Pelaia) - Started using service based applications - Using "off-the-shelf" protocols, services - Rendezvous for networking details, Xml-rpc for passing the information simple interfaces - Application Viewer uses this to monitor other XAL applications - Application framework provides broadcast capability - Used to kill "forgotten" applications ### Service Applications, Machine Protection System Post Mortem (T. Pelaia) - Service constantly monitors MPS events, sorts the flood of MPS signals by time per MPS trip - Keeps statistics - Keeps log of past 1000 events - Multiple clients can access it to display results - Replaces the old standalone post mortem #### Service Applications, "PV Logger" (T. Pelaia) - SPALLATION NEUTRON SOURCE - Server grabs "sets" of data the accelerator physics is interested in - Magnet settings, RF settings, BPM readbacks - Posts to the database once / hour, or on demand - Planning to use this as a data source for the online mode Client application viewing a PV set May 11-13, 2004 #### **Starting on Ring Apps** - Members of the AP group (S. Danilov, S. Cousineau) are preparing Ring applications using XAL tools - HEBT matching algorithms - Ring Optics settings - Injection #### **Summary** - The XAL application programming infrastructure is in place and working. - ~ 20 applications written - Online modeling is available - Service applications are started - Directions - More applications - Data analysis - Database, database, database #### XAL is used • Operator console snapshot, 4/23/04